Show simple item record

dc.creatorJuteau, Daniel
dc.date2007-04-25
dc.date2007-06-13
dc.date.accessioned2012-06-08T14:34:40Z
dc.date.available2012-06-08T14:34:40Z
dc.date.issued2012-06-08
dc.identifierhttp://arxiv.org/abs/0704.3417
dc.identifier.urihttps://repositorio.leon.uia.mx/xmlui/123456789/43335
dc.descriptionWe compute the integral cohomology of the minimal non-trivial nilpotent orbit in a complex simple (or quasi-simple) Lie algebra. We find by a uniform approach that the middle cohomology group is isomorphic to the fundamental group of the sub-root system generated by the long simple roots. The modulo $\ell$ reduction of the Springer correspondent representation involves the sign representation exactly when $\ell$ divides the order of this cohomology group. The primes dividing the torsion of the rest of the cohomology are bad primes.
dc.descriptionComment: 29 pages, v2 : Leray-Serre spectral sequence replaced by Gysin sequence only, corrected typos
dc.subjectMathematics - Representation Theory
dc.subject20G99
dc.titleCohomology of the minimal nilpotent orbit
dc.typetext


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record